BS4NM 2017 1 Year Biotechnology Course - The rAmylase Project Theme

Suggested Lesson Planning Guide Scope and Sequence

Four semesters of daily 55-minute periods (or 4.5 hrs/week) of lab and lecture/discussion meetings. Activities may require adjustment to meet unexpected changes in time, supplies, or student and teacher experience. Adjustment in Biotech Online (BO), Biotech Live (BL) and Bioethics (BE) activities and testing may be made as necessary. * = G-Biosciences' "The rAmylase Project" Kit is available.

Week	Lab	Lab/Computer/Activities	Text Section Support,	Key Skill Objectives/Activities
		Lesson/Focus	Lecture Discussion Focus, Activities	
1	1a	Scientific Notebook	1.1 Introduction to Biotech, BL# 1.1 What is Biotech? BL# 1.5 Staying Current in Biotech	 Start and maintain a legal scientific notebook Explore Who/What/Where/How of Biotech Understand the breadth of biotech domains
	1b	Laboratory Safety	Inventory Logs BL# 3.1 Maintaining Stock Areas BL# 3.3 Hazardous Chemicals	 Learn emergency procedures and the location of safety hazards and emergency equipment Setting up and stocking the biotech lab - Inventory Log
2	1c	Cheese Production	 1.4 Scientific Methodology, Data Processing/Reporting 1.2 Biotech Products BL# 1.4 How Biotech Improves Life 	 Conduct a controlled experiment, analyze and report data, Excel®, WORD®, conclusions Conduct a controlled experiment, analyze and report data, Excel®, WORD®, conclusions Explore Biotech Companies and their Products
3		Biotech Company Stock Project	1.3 How Companies Select Products BL# 1.2 Business Side of Biotech BL# 1.3 Investing in Biotech	- Stock Project set up and monitoring (check each week)
4		Biotech Career Exploration	1.5 Biotech CareersBO: Finding Hot Jobs1.6 Bioethics, Bioethical DilemmasBE: Use of Animals in Science	 Career Exploration Using Chapters' Biotech Career Focus and BO: Finding Hot Jobs Animal Use Values Clarification
5	2b	Model Organism Growth	2.1 Organisms and their Components BL# 2.1 Biohazards	 Recognize Levels of Biological Organization Understand how to deal with biohazards
	2c	Microscopy	2.2 Cellular Organization BO: Cell Picture Show	Learn microscope use for prepared and wet mount slidesCompare and contrast prokaryotic vs. eukaryotic cells
6	2d	Microscopic Measurement Microscope Skills Quiz	BE: Stem Cells BL# 2.2 ATCC	 Learn to estimate the size of microscopic specimen. Demonstrate competence in microscope use Stem Cell Use Values Clarification
	2f	Carbohydrate Molecular Variety	2.3 The Molecules of Cells BO: Computer Molecular Models	Review macromolecules using molecular model applciationDemonstrate the impact of slight molecular variations
7	3a	Pipeting	3.1 Measuring Volumes BL# 3.5 Writing a SOP	- Demonstrate skill using pipets and pipet pumps
	3b	Micropipeting Micropipeting Skills Quiz		Demonstrate skill using micropipets and microcentrifugeDemonstrate competence in pipeting

			BE: Honesty – The Best Policy?	- Scientific Integrity Values Clarification
8	3c	Mass Measurement	3.2 Making Solutions	- Use a balance to measure solutes for solution.
	7a	Using the	7.1 Using the Spectrophotometer	- Learn how to operate a spectrophotometer and how light
		Spectrophotometer (as		corresponds to colors of the visible spectrum in preparation to
		demo)		judge solution preparations
	7b	Using the Spec to Study	BO:Visual Spectrophotometry Virtually	- Use a VIS-spec to determine the absorption spectra and
		Molecules (into Week 9)	r r r r r r r r r r r r	Lambda _{max} for three colored solutions and check solution prep
9	3d	Mass/Volume Solutions	3.3 Making Solutions from Scratch	- Prepare various mass/volume solutions and check preparation
				- Best-fit straight line graph and linear regression to check data
10	3e	Percent Mass/ Volume		- Prepare various percent mass/volume solutions and check
		Solutions		preparation
	3f	Molar Solutions	BL# 3.4 Molecular Weights	- Review of molecular weight determinations
			C C	- Prepare various molar solutions
11	3g	Measuring pH	3.4 pH	- Use pH meter and pH paper to check and adjust solutions
	3h	Effect of pH on Protein	BL# 3.7 "pHun" at home with pH	- Demonstrate how proteins chang in changing pH and the
		Structure		importance of protein buffers
	3i	Buffer Efficacy	3.5 Buffers	- Compare the buffering of different buffers
		2	BO: Blood Buffer System	
12	3j	Dilutions	3.6 Dilutions	- Prepare dilutions of solutions and check preparation
		Solution Prep Skills Quiz		- Demonstrate competence in solution preparation
13	4a	DNA Isolation Solutions	4.1 DNA Structure and Function	- Understand how DNA structure impacts function and isolation.
			BL# 4.1 DNA Models	- Prepare buffers and reagents for DNA isolation
	4b	DNA Spooling	BL# 4.5 DNA Computer Model	- Conduct alcohol precipitation of pure DNA sample
	4d	EtBr DNA Sample testing	4.2 Sources of DNA	- Confirmation of DNA in preciptated samples
		(optional/teacher demo)	BL# 4.2 <i>E.coli</i> as a Model Organism	
14	4e	Media Prep	4.3 Isolating and Manipulating DNA	- Prepare LB agar and LB broth
	4f	Sterile Technique	BL# 4.3 Bacteria Growth Curve	- Pour sterile LB agar Petri plates
	4g	Bacteria Cell Culture		- Streak isolated E.coli colonies and monitor colony growth
15	4g	Bacteria Cell Culture	BL# 4.4 NCBI and Bioinformatics	- Start broth cultures
			BO: Know Your Genome	- Learn how to access public DNA data
	4h	Bacteria DNA Extraction		- Isolate and confirm genomic DNA isolation from bacteria
			BE: GeneTherapy	- Manipulating the Humane Genome Values Clarification
16	4i	Agarose Gel Prep	2.4 The "New" Biotechnology	- Prepare an agarose gel
			BO: Recombinant Pharmaceuticals	
	4j	Agarose Gel	4.4 Gel Electrophoresis	- Compare and contrast horizontal vs vertical gel electrophoresis
		Electrophoresis (pre-lab)		- Prepare samples for an agarose gel
17	4j	Agarose Gel	BO: Chop and Go Electrophoresis	- Load, run, stain and analyze DNA on a gel
		Electrophoresis (lab)		
	Final	Timed Notebook Final		- Semester Final (Written)
18	Final	Lab Practical Final =		- Semester Final (Lab Practical)
		Lab 4c Yeast DNA		- Notebooks turned in for final evaluation
		Extraction & Gel		
		Confirmation		

19		BL#5.1 Protein Structure/Function "Mini-	5.1 Structure and Function of Proteins	Set up new NBDistinguish between 9 protein groups based on their function
		Poster" BL#5.2 Insulin Amino Acid Sequence/Structure	5.2 Production of Proteins	- Create a 3-D paper model of pro-insulun, then insulin.
20	5a 5b	Antibody Function Enzyme Function	BO: Antibody-Producing Companies5.3 Enzymes: Protein CatalystsBO: Enzymes: Catalysts for Better Health	 Antibody-antigen interations, testing, use, applications Review of enzyme structure and function Test the activity of different enzymes on juice production
21	5d 5e	Protein Indicators Buffer Prep for PAGE	5.4 Studying Proteins	 Protein Indicators, Spectrophotometry, and Standard Curves Prepare buffers, loading dyes and samples for analysis on SDS_PAGE gels.
22	5f* <u>or</u> 6a*	Protein Characterization by PAGE	Online comparison of vertical and horizontal gel electrophoresis > factsheet	- Load, run, stain, and analyze proteins on a PAGE gel proteins to learn how to characterize them for future studies
23	5g	Muscle Tissue Protein Study	5.5 Applications of Protein AnalysisBE: How Owns your Genetic Code	 Prepare and run animal muscle tissue samples to run PAGE gels to study differences in tissue protein composition Genetic Information and Privacy Values Clarification
24	6a	Searching for Native Amylase	6.1 Sources of Potential Products and Unit 2 Intro = The rAmylase Project, use text Figure 1.21 BL #6.1 Exploring Potential Products	 Review of how a recombinant protein, such as amylase, might be made for market Search and evaluation of a potential commerically-interesting amylase in nature
	6c	Starch and Sugar Assays	6.2 The Use of Assays	- Conduct positive and negative control aldose and starch indicator tests
25	6d*	Amylase Assay BL# 6.3 Latest in ELISA and Western Blots	BL #6.2 Amylase Three-Dimensionally 6.3 ELISA	 Quantify alpha-amylase activity from different samples Descibe how ELISA and Western blots utilize antibody and enzyme technology to quantify protein in samples.
26	6e*	Amylase ELISA BL #6.5 Product Pipeline Study	BO: ELISA Diagnostic Kits 6.6 Producing Recombinant DNA Protein Products	 Conduct an ELISA to determine the concentration of 2 unknown amylase samples Demonstrate an understanding of all the major steps in bringing a recombinant protein product from conception to market.
27	6f*	Western Blot of Amylase BL #6.5 Product Pipeline Presentations	6.4 Western Blots	 Conduct a Western Blot to confirm the presence of low concentrations of amylase in samples In oral presentations, summarize the major steps in research, development, manufacturing, and marketing
28	7c 7d*	Use Spectrophotometer to Study Amylase Determining Amylase	7.2 Spec to Measure Protein Concentration BO: Which Indicator is Indicated?	 Determine the absorbance spectrum for amylase-Bradford reagent to learn Lambda_{max} Use a best-fit standard curve and protein indicators to determine
	/u	Concentration		the concentrations of unknown amylase solutions
29	7g	UV Spec to Study Proteins BL#7.3 Diagnostic Spectrophotometry Spec Skills Quiz	7.4 Other SpectrophotometersBO: Spectrometer vs. Spectrophotometer7.5 Applications of Spectrophotometry	 Use a UV spec to determine the Lambda_{max} for a sample of colorless protein Demonstrate compentence using the spectrophotometer

30	8a	Restriction Digestion of Lambda Phage	8.1 Overview of Genetic Engineering BO: Endonucleases: Real "Cut-ups"	- Conduct a restriction digestion of the Lambda DNA to learn about restriction enzymes and their role in DNA fingerprinting
		Lamoua i nage	bo. Endonucleases. Real Cut-ups	restriction enzymes and then role in DNA ingerprinting
31	8b*	Restriction Digestion of	8.2 Using Recombinant DNA for	- Conduct a restriction digestion of the pAmylase to confirm its
	0 *	pAmylase2014	Transformation	presence prior to transformation of <i>E. coli</i> cells in Lab 8c
	8c*	Transformation (pre-lab)	BL #8.2 Restriction Enzymes: Protein Scissors	- Prepare reagents/media for Lab 8c transformation
32	8c*	Transformation of <i>E. coli</i>	8.3 Transforming Cells using rDNA	- Use competency and hot and cold shock to transfer plasmids into
-		by pAmylase 2014		<i>E. coli</i> , then select transformants on selction media
		51 5	BO: A Glow in the Dark Cat?	- Research about genetic engineering in other organisms.
33	8e	(modified) Scale-up of	8.4 After Transformation	- Grow transformed cells in broth to a high enough concentration to
		Transformed Cultures		extract the transforming plasmid back out of the transformed
	0.*			cells.
	8g*	Mini-Prep of	8.6 Retrieving Plasmids	- Use mini-prep kit to isolate pAmylase 2014 from transformed
	(1	pAmylase2014		
	6d	(modified) Amylase	BE: Designer Babies:Using New	- Test for Amylase production in transformed cells broth cultures
		Assays on Transformed BrothCultures	Technologies	
34	9c*	Ion Exchange	9.1 Intro to Biomanufacturing	- Summarize the major steps to scale up transformed cells to
54	90.	Chromatography	9.2 Using Chromatography to Separate	- Summarize the major steps to scale up transformed cens to marketable amounts
		Chromatography	Proteins	- Conduct an ion-exchange chromatography to demonstrate that
		BO: Products in the	9.4 Product Quality Control	amylase can be purified from other proteins
		Pipeline	S. Troduct Quality Condor	unylase can be partice from other proteins
35	13g	Amylase Gene PCR	13.3 PCR	- Use PCR to confirm the presence of the Amylase gene in a DNA
		Stock Investment PPT	13.4 Applications of PCR	sample
		Presentations		- Final data analysis and oral PPT presentations of investment
		Timed NB Final		projects
36	Final	Hemoglobin Concentration		- Semester Final (Written)
		Lab Practical Final		- Semester Final (Practical)
		Lab Clean up		- Notebooks turned in for final evaluation