Two-term Skill Development Lab-based, Concept-Supported Course Plan

Suggested Lesson Planning Guide 32 weeks, 5-6 hours of lab and lecture/discussion meetings/week

Week	Lab(s)	Lab Lesson Focus	Text Section Support and	Key Lab Skill Objectives
			Lecture Discussion Focus	Students will:
1	1a	Scientific Notebook	1.1 Defining Biotechnology	- Start and maintain a legal scientific notebook
	1b	Laboratory Safety	1.2 Biotechnology Products	- Learn emergency procedures and the location of safety
			1.3 Selecting Potential Products	hazards and emergency equipment
2	1c	Cheese Production	1.4 Scientific Methodology	- Conduct a controlled experiment, analyze and report
			1.5 Biotech Careers	data
			1.6 Bioethics	
3	2b	Model Organisms	2.1 Organisms and their Parts	- Grow, maintain, and monitor bacteria and fungi
	2c	Microscopy	2.2 Cellular Organization	- Learn microscope use for prepared and wet mount slides
4	2d	Microscopic	2.2 Cellular Organization	- Learn to estimate the size of microscopic specimen.
		Measurement		
	2e	Properties of	2.3 Molecules of Cells	- Study the structure and characteristics of different
		Carbohydrates		carbohydrates
5	3a	Pipeting	3.1 Measuring Volumes	- Demonstrate skill using pipets and pipet pumps
	3b	Micropipeting		- Demonstrate skill using micropipets
6	3c	Mass Measurement	3.2 Making Solutions	- Demonstrate skill using balances
	3e	Mass/Volume	3.3 Mass/Volume Solutions	- Prepare various mass/volume solutions
		Solutions		
7	3f	Percent Mass/	3.4 Percent Mass/ Volume	- Prepare various percent mass/volume solutions
		Volume Solutions	Solutions	
	3g	Molar Solutions	3.5 Molar Solutions	- Prepare various molar solutions
8	3h	Dilutions	3.6 Dilutions	- Prepare dilutions of solutions
	4a	DNA Isolation	4.1 DNA Structure and	- Prepare buffers and reagents for DNA isolation
		Solutions	Function	
	4b	DNA Spooling		- Conduct alcohol precipitation of pure DNA sample
9	4e	Media Prep	4.2 Sources of DNA	- Prepare LB agar and LB broth
	4f	Sterile Technique		- Pour sterile LB agar Petri plates

Activities may require adjustment to meet the time limitations of a particular course.

10	4g	Bacteria Cell Culture	4.2 Sources of DNA	- Streak isolated colonies and start broth cultures
	4ĥ	Bacteria DNA	4.3 Isolating and Manipulating	- Isolate genomic DNA from bacteria
		Extraction	DNA	č
11	4i	Agarose Gel Prep	2.4 The "New" Biotechnology	- Prepare an agarose gel
	4j	Agarose Gel	4.4 Gel Electrophoresis	- Load, run, stain and analyze DNA on a gel
	-	Electrophoresis	-	
12	13e	Lambda PCR	13.1 Making DNA	- Perform a PCR reaction
13	13f	Human DNA	13.3 Polymerase Chain	- Isolate DNA from cheek cells for PCR
		Extraction	Reaction	
	13g	Alu PCR	13.4 Applications of PCR	- Use PCR to test DNA for a specific genotype.
		Genotyping	Technology	
14	5a	Antibody Function	5.1 Structure and Function of	- Simulate antibody-antigen testing
			Proteins	
	5b	Enzyme Function	5.3 Enzymes: Protein Catalysts	- Test enzyme activity at different concentrations
15	5f	PAGE	5.4 Studying Proteins	- Prepare protein samples and load, run, stain and
				characterize proteins on a PAGE gel
16	5g	Identifying Proteins	5.5 Applications of Protein	- Prepare animal muscle tissue samples and run gels to
			Analysis	study differences in protein composition
17	6b	Starch and Sugar	6.1 Sources of Potential	- Conduct aldose and starch indicator tests
		Assays	Products	
	6c	Amylase Assay	6.2 The Use of Assays	- Test saliva for alpha-amylase activity
18	14a	ELISA	14.3 Advanced Protein Studies	- Conduct a qualitative ELISA (antibody assay)
19	6d	Testing Plants	6.3 Products from Nature	- Extract compounds from plants and test the extracts'
		Substances	6.4 Plant Proteins as Products	antimicrobial activity on the growth of E. coli
20	6e	Searching for Native	6.5 Producing Recombinant	- Predict where amylase-producing bacteria might be
		Amylase	DNA Protein Products	found in nature and attempt to isolate colonies
	7a	Using the	7.1 Using the	- Learn how to operate a spectrophotometer and how
		Spectrophotometer	Spectrophotometer	light corresponds to colors of the visible spectrum
21	7b	Using the Spec to	7.1 Using the	- Use a VIS-spec to determine the absorption spectra
		Study Molecules	Spectrophotometer	and Lambda _{max} for three colored solutions
	7c	Measuring pH	7.2 Introduction to pH	- Learn to use pH paper and a pH meter
22	7d	Making Buffer	7.3 Buffers	- Prepare a buffer to use in making a protein solution
	7e	Demonstrating		- Prepare buffers and test their ability to resist changes
		Buffer Efficacy		in pH

23	7f	Spec Amylase Study	7.4 Determining Protein	- Determine the absorbance spectrum for amylase-
23	7g	Determining	Concentration	Bradford reagent to learn Lambda _{max}
	/g	Amylase	Concentration	- Use a best-fit standard curve to determine the
		Concentration		
24	7i		7404	concentrations of unknown amylase solutions
24	/1	UV Spec to Study	7.4 Determining Protein	- Use a UV-VIS spec to determine the Lambda _{max} for a
	01	Proteins	Concentration	sample of colorless protein
	8b	Restriction Digestion	8.1 Overview of Genetic	- Conduct a restriction digestion of the pAmylase to
		of pAmylase	Engineering	confirm prior to transformation of <i>E. coli</i> cells
25	8c	Transformation	8.2 Transforming Cells	- Transfer plasmids into <i>E. coli</i> and select transformants
26	8e	Scaling-up	8.3 After Transformation	- Select colonies and scale them up from a selection
		Transformed Cells	8.4 Fermentation,	plate to selection broth media.
			Manufacturing, and GMP	
27	9a	Harvesting Amylase	9.1 Harvesting a Protein	- Separate transformed cells from broth and test the
			Product	broth for amylase activity
	9b	Dialysis of Protein	9.2 Using Chromatography to	- Use dialysis tubing to conduct a buffer exchange prior
		Buffers	Study and Separate Molecules	to column chromatography
28	9c	Using Ion-Exchange	9.3 Column Chromatography	- Separate lysozyme from albumin on an ion-exchange
		Chromatography		column
29	9d	Ion-Exchange	9.4 Product Quality Control	- Use an ion-exchange column to determine the overall
		Purification of	9.5 Marketing and Sales	charge of amylase at pH7.2 and isolate amylase from a
		Amylase	_	broth culture.
30	12a	Using the UV Spec	12.1 Drug Discovery	- Use the UV spectrophotometer to characterize, a
		to Study Caffeine		colorless organic compound, caffeine
	12b	MSDS to Recognize		- Access MSDS data to learn the characteristics of
		Compounds		compounds
31	12c	Synthesis of Aspirin	12.2 Creating Pharmaceuticals	- Synthesize acetylsalicylic acid through combinatorial
			by Combinatorial Chemistry	chemistry
32	12d	Melting Point	12.3 Creating Pharmaceuticals	- Conduct melting point determinations the product of
		Determinations for	by Peptide and DNA synthesis	their acetylsalicylic acid production
		Quality Control	12.4 Pharmaceuticals by Protein	5 5 1
		<u></u>	Engineering	
L	1	1	00	